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ABSTRACT

A derivation of the gravitational redshift effect to order ¢=* is presented. The cal-
culation is performed within the framework of the parametrized post—Newtonian for-
malism for analyzing metric theories of gravity, which includes corrections to second-
order in the Newtonian potential, gravitomagnetic contributions, and preferred-frame
terms. We briefly discuss how to generalize our results to include possible violations
of local Lorentz invariance or local position invariance which can arise in nonmetric
theories. Our results are useful for analyzing possible new redshift xperiments which

may be sensitive to second-order effects, such as a close solar flyby mission.

PACS numbers: 04.20.Cv, 04.80.4z, 04.50.+h



I. Introduction

The gravitational redshift cffect is the observed shift to a lower frequency of
an oscillator near a massive body relative to its frequency at infinity. This is a
fundamental result of the Einstein Equivalence Principle (EEP), upon which general
relativity and all other metric theories of gravity are based.! If the EEP is valid, then
the laws of physics governing the operation of an oscillator or a clock should be locally
Lorentz-invariant and position-invariant in a gravitational field. By adopting only
these two requirements, it is possible to derive the redshift effect to first-order in the

Newtonian potential without specifying a particular theory of gravity (for example,

see Ref. [2]).

To order ¢™2, the frequency shift of a photon propagated between two points T

and 7 is given in an inertial reference frame by the expression

fo=fAll =7 (T = B1)/c— (1/2) (v = v})/c* = (7 &1)(R2 - T2)/

, (1.1)
+ (R 01)? ) = (Ur — Ua) /P

where ¥ is the velocity of the emitter at &1, U, is the velocity of the receiver at 7,
7 1s a unit vector pointing from Zj to 5, and U; and U, are the total Newtonian
gravitational potentials at each point, respectively, defined positively. Eq. (1.1) is
consistent with the EEP to first-order in U. Any metric theory of gravity, such as
general relativity, must make the same prediction to this order, provided the theory

yields the correct Newtonian equation of motion.
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The first-order prediction has been tested to highest precision in a 1976 NASA
experiment called Gravity Probe A (GP- A), in which a hydrogen maser oscillator was
flown on a Scout rocket in the gravitational field of the Earth.® Additional spacceraft
experiments have been performed at Saturn® and in the solar gravitational field,® but
with less stable crystal oscillators. A close solar probe mission has been studied by
NASA for many years, in which a spacecraft would fly by the Sun at a heliocentric
distance of only 4 solar radii (for a recent review, see Ref. [6]). Similar missions have
been considered by the European Space Agency (ESA) and by the Russian Institute
for Space Research (IKI). If an atomic frequency standard, such as a hydrogen maser
oscillator, were included on the spacecraft, then it might be possible to test the
redshift effect to second-order in the Newtonian potential of the Sun at an interesting
level of precision. At second-order, the experiment would test not only the EEP, but
also specific theories of gravity. A small group of scientists has recently been funded
by NASA to investigate this possibility. A group at JPL is performing a mission

simulation and a detailed covariance analysis. A second group at the Smithsonian

Center for Astrophysics is investigating requirements on the maser flight unit. At
this point, however, NASA has made no definite commitment to proceed with the

mission.

In a previous study, general relativistic effects on the equation of motion of
the spacecraft were modeled to second-order in the PPN formalism, but the red-
shift was modeled to only first-order.” In this report, we present a derivation of
the gravitational redshift to order ¢™* in support of the new study. We will adopt
the parametrized post-Newtonian (PPN) framework for analyzing metric theories of
gravity. However, we will restrict our analysis to semi-conservative theories of grav-
ity, in which the PPN parameters {as, (1,(2, (3, (s} arcidentically zero. Furthermore,

we will assume a single, stationary body whose center of mass is at rest, and which is
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rotating slowly enough that we may also assume nearly spherical symmetry; appro-
priate assumptions for analyzing a close solar flyby mission. Unlike the first—order
calculation, we will see that it is necessary to consider the photon equation of motion
at this level of accuracy. Although our main interest is in PPN effects on the redshift,
we will briefly discuss how to include possible violations of local Lorentz invariance

and local position invariance.

The remainder of this paper is organized as follows. In the next Section, we will
derive a general form for the redshift which includes contributions from the photon
wave vector. In Section III, we will integrate the photon equation of motion. Qur final
results are presented in Section IV, and conclusions in Section V. For convenience,
units in which G = ¢ = 1 will be used. Greek indices range over 0, 1,2, 3, whereas
latin indices range over 1,2,3. Partial derivatives are denoted by a comma, and

covariant derivatives with respect to the metric connection by a semicolon.



II. The Measured Frequency Shift

For metric theories of gravity, the frequency f,, of a photon measured by an
observer at a point (¢,2') can be found by projecting the photon wave-vector k onto

the observer’s four-velocity u at that point:

Wy = —L:L u'= —(kouo + k,-ui), (2.1)

where wy,, = 27 f,,. We can expand the components of k£ about their flat spacetime

values according to

ko(z) = —w[1 = ko(a)], (2.2q)
ki(z) = wlig + ki(a)), (2.2b)

where 7; is a unit vector along the direction of propagation. Eq. (2.1) then becomes

wm = wu®[1 = ko(z) — 7t - v — k(z) - 2], (2.3)

where v is the observer’s three-velocity. Eq. (2.3) can be used to calculate the
ratio of the frequencies which would be measured at two points z; = (t1,2%) and

xy = (t2,x%). Expanded to order v?, the result is
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where we have neglected contributions from kg (to be justified in the next Section).
Eq. (2.4) provides a general form for the measurable frequency shift. To make Eq.
(2.4) more useful, we will have to provide specific expressions for ©° and the perturbed

wave—vector components {( kg, k;).
0y Ny

With proper time defined by dr? = —g,,da*dz?, then

o da® ~1/2 goj i . Gij i 4 172
u = d—T = (——goo) 1+ 2=/ + —v'v’ ) (25)

Joo goo

Under the assumptions stated in Section I, the PPN metric components are given by

oo = =14 20 = 36U — (@ — axu?U ~ a3V 5

1 .
+gaw - (§ x )/, (2.6a)
1 (£txJd); 1 : . ¥
go; = ZAQT)Z - 5(01 — 200)Uw? — az(F - w)UP?, (2.6b)
gi; = (14 29U)éy5, (2.6¢)

where £ = z/[z], A = 4y + 4 + a1, and w is the possible preferred—frame velocity of
the PPN coordinate system (for example, see Ref. [8]). The vector J represents the
rotational angular momentum of the body. Using these metric components in Eq.

(2.5), we obtain to order ¢™*
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This expression can be used to calculate the ratio uo(icg)/uo(fl) in Eq. (2.4). The

result 1s

UK, )

uCx )

= (U U;) - (v = v )
R AR AR

—[G-)U - (F-0U" + U]

- [G+r)uve- (v U+ 20T v‘)]
‘é‘g(ﬁ—n <) (U -U) + wfuers Uen
+ (= 2206 0T - Gy UL
AU G B 7)) - U uiﬁ)w-z:ﬂ%

2
_;(ng ’\{/'Cf‘?;xg)/flt —’\"/z. /W;X;:)/l"]
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11I. Computation of the Photon Wave—Vector

It is convenient to define a tensor h,,, such that

Guv = Nuv + huua (31)

where = diag(—1,+41,+1,+1) is the Minkowski tensor. Using this definition in the

equation of motion for the photon wave-vector, given by

kuuk? =0, (3.2)

results in the expression

dk, 1

e - By 3.2
I = 5 hevn KR 4+ O(RR), (3.3)

where A is an affine parameter along the photon tra jectory, and indices are now raised
and lowered with 7. Expanding k, according to Eq. (2.2) and applying the condition

kyk* = 0, we obtain from equations (2.6) and (3.3) the result

dk .
_# = (1 + ‘Y)U,,, +h0jm nJa (3.4)
to necessary order, where t is coordinate time. Equation (3.4) can be integrated to

obtain /;,l(ar). We note that IAcO 1s zero at this order for no explicit time dependence

of the source, which is why it was not included in Eq. (2.4).
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To integrate Eq. (3.4) for ki, we assume a nearly spherically symmetric source
such that U(z) = M/r; the expression for hg; is dictated by Eq. (2.6b). The
unperturbed path of the photon is a straight line with coordinates z(t) = n(t—te)+z.
as a function of ¢, where (t., z.) specifies the time and place of emission. To necessary
order, this relation can be used to integrate Eq. (3.4). However, the constant of
integration is specified by requiring that the orthogonal projection of the actual

perturbed path satisfics

dx?
= =0, .
E{te (3 5a)

gl =at — 75‘(’1:} - T), (3.5b)
L.e., that upon emission the photon propagates initially in the direction 7, where

%' = [ — 2(1 + VU’ + k], (3.6)

to the required order. After evaluating several integrals and collecting terms, we find

that for a photon emitted from the point Z1 in an initial direction’@,
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IV. Final Results
We now have all of the ingredients necessary to calculate the relativistic fre-
quency shift to order ¢~*. Using Eq. (2.8) in Eq. (2.4) yields
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where/l;‘(g) is given by Eq. (3.7).
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A possible limitation of Eq. (4.1) is the assumption of the validity of the EEP.
We need to incorporate into Eq. (4.1) possible violations of local Lorentz invariance
(LLI) or local position invariance (LPI). To be rigorous, we should adopt a complete
nonmetric formalism which reduces to the PPN formalism in an appropriate limit.?
We have avoided this complication in this paper, having focussed instead upon the
standard PPN formalism.!? It is possible, however, to generalize to a certain extent

the results already at hand.

We can account for certain possible violations by inserting the additional pa-

rameters (&, €, €2) into Eq. (2.7) such that

u =14 alU + %elvz + 26204 + ., (4.2)
The PPN parameters 3 and v in Eq. (2.7) should be relabeled in order to absorb other
possible LLI or LPI violating terms having similar dependencies. We accomplish this
by simply placing a “tilde” over the parameters, but leave unchanged the meanings
of the gravitomagnetic parameter A and the preferred-frame parameters a; and as.
Violations of LLI or LPI could have a different affect on the photon equation of
motion. Therefore, to carry our generalization further, the parameter v in Eq. (3.7)
should be given still a different name, perhaps by giving it a “p” subscript. With

this in mind, our generalization of Eq. (4.1) is given by
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V. Conclusions

We have presented a derivation of the gravitational redshift effect to order =14,
The calculation was performed within the framework of the PPN formalism for metric
theories of gravity, but we also considered how to include possible violations of the
equivalence principle. As mentioned in the Introduction, our primary motivation was
to be able to model accurately a possible solar probe test of the redshift. If an atomic
frequency standard, such as a hydrogen maser, were flown on the spacecraft, then
it might be possible to detect fractional frequency variations as small as 1 part in
10'®. At the periapsis of 4 solar radii, we would be sensitive to first—order effects
of the Newtonian potential U as small as 2 parts in 10!°, to second—order effects of
U? of 4 parts in 10%, and to preferred—frame effects of order w2U of 1 part in 104,
The gravitomagnetic effect arising from solar rotation of order vJ/r could produce
a fractional frequency shift of roughly 5 x 1071 at periapsis, and thus might be
detectable. Currently, we are planning to use Eq. (4.1), along with the PPN equation
of motion of the spacecraft, in a rigorous covariance analysis of the planned mission
to determine more precisely the sensitivity of the experiment to these second—order

effects.
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